Formation of double Neutron star systems and implications for heavy element production

Paz Beniamini
California Institute of Technology

Formation of double Neutron star systems and implications for gold production

Paz Beniamini California Institute of Technology

Creation of an r-process element (a.k.a. gold) in mythology

Inti – Inca sun god who's tears were gold

 Midas – king in Greek mythology 'gifted' with golden touch

Alchemy

Isaac Newton, Robert Boyle and Tycho Brahe were obsessed with the sorcerer's stone that would turn base metals into gold and grant immortality

Modern understanding of elements – The structure of matter

 Matter composed of atoms which differ by proton and neutron number in nuclei

Modern understanding of elements – The structure of matter

Matter transforms between forms

Fusion (e.g. stars)

Fission (e.g. nuclear power plants)

Major difference between fusion in stars and fission in nuclear power plants

Modern understanding of elements

- Light elements mostly formed in big bang and cosmic rays
 - Heavier elements forged in hearts of stars
- Heavier elements still require external source of energy –
 Created in extreme temperatures and densities
 via the r-process

The r-process

Silver

Gold

Mercury

WHERE DID THEY COME FROM?

Hydrogen		$\bigvee\bigvee$	HE	KE L	טוע		1EY	\mathcal{L}	\mathcal{I}	\L	-KC)/\/(· /				
3 Li Lithium	Be Beryllium	■ Elements that have been made in part by the <i>r</i> process B Boron											on	7 N Nitrogen	0	luorine	Ne Neon
Na Sodium	Magnesium	Si S CI Ar Silicon Sulfur Chlorine Argon													Ar		
19 K Potassium	Ca Calcium	Sc Scandium	Ti Titanium	23 V Vanadium	Cr Chromium	Mn Manganese	Fe Iron	Co Cobalt	28 Ni Nickel	Cu Copper		Ga Gall	manium	AS Arsenic	Se Selenium	Br Bromine	Kr Krypton
Rb Rubidium	Sr Strontium	39 Y Yttrium	Zr Zirconium	Niobium	MO Molybdenum	Tc Technetium	Ru Ruthenium	Rh Rhodium	Palladium	Ag Silver	48 C	In Indium	Sn Tin	Sb Antimony	Te Tellurium	53 lodine	Xe Xenon
55 Cs Caesium	56 Ba Barium	57-71	72 Hf Hafnium	73 Ta Tantalum	74 W Tungsten	75 Re	76 Os Osmium	77 r ridium	78 Pt Platinum	79 Au Gold	Hg Mercury	81	82 Lead	83 Bismuth	84 Polonium	85 Astotine	86 Kadon
87 Fr Francium	Radium	89-103	104 Rf Rutherfordium	105 Db Dubnium	106 Sg Seaborgium	107 Bh Bohrium	108 Hs Hassium	109 Mt Meitnerium	Ds Darmstadtium	Rg Roentgenium	112 Cn Copernicium	113 Nh Nihonium	114 F Flerovium	115 Mc Moscovium	116 LV Livermorium	TS Tennessine	118 Og Oganesson

8	57 La Lanthanum	Ce Cerium	59 Pr Praseodymium	Neodymium	Promethium	Sm Samarium	63 EU Europium	Gd Gadolinium	Tb Terbium	Dy Dysprosium	67 Ho Holmium	68 Er Erbium	Tm Thulium	70 Yb Ytterbium	71 LU Lutetium
	Actinium	70 Th Thorium	Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	Cf Californium	99 Es Einsteinium	Fermium	Mendelevium	No Nobelium	103 Lr Lawrencium

Traditionally r-process thought as linked to supernovae
 Explosions of dying massive stars

r-process - astrophysical evidence

Total mass of r-process material in the Milky Way

Total mass of r-process $M_{tot} = t R m$ \leftarrow material - measured

Time of active formation - **known**

Rate of events - unknown

r-process mass created per event- *unknown*

Events either

'common' (every ~ 50 years) and produce small amounts of mass per event (0.005% of

sun's mass)

Events rare (every ~ 50,000 years) and produce large amounts of mass per event (5% of sun's mass)

r-process - astrophysical evidence

Total mass of r-process material in the Milky Way

Total mass of r-process $M_{tot} = t R_m +$ material - measured Time of active Rate of events formation - known

r-process mass created per event- unknown

Events either

'common' (every ~ 50 years) and produce small amounts of mass per event

(0.005% of

sun's mass)

Supernovae

Double Neutron star mergers

unknown

Events rare (every ~ 50,000 years) and produce large

amounts of

mass per event (5% of sun's mass)

What are neutron stars?

- Extremely dense remnants of once massive stars that exploded in supernovae and lost their envelopes
- A Neutron star with the mass of the sun is only 10 km in radius!

 Like condensing a jumbo jet to a size of a single hair as long as it is wide

Merger due to gravitational waves

- Masses orbiting each other lose energy due to gravitational waves
- The separation between the objects decreases over time, until their eventual merger

 Merger results in a gamma-ray burst, and also in a weaker explosion known as the kilonova, that is powered by radioactive decay of rprocess elements

Merger due to gravitational waves

Gravitational radiation is a general relativistic effect that was predicted by Einstein and observationally confirmed using a DNS system in the seventies. The radiation itself was directly observed for the first time in 2015 from black holes and in 2017 from neutron stars.

Hulse & Taylor 74 (Nobel prize 93)

LIGO's first detection of gravitational waves from a merging DNS (Nobel prize 2017)

GW 170817

This lead to discovery of a gamma-ray burst and other electromagnetic counterparts that accompanied the gravitational waves

Discovery by gravitational waves allows us to detect gamma-ray bursts at a closer distance and from a different viewing angle

This allows us to detect different kinds of electromagnetic signals that were previously hidden from view

Kilonova

- Kilonova observed by optical telescopes days after merger
- Wavelength, brightness and duration of signal allow us to calculate total mass of r-process elements formed in explosion
- So how much r-process formed?

The expected kilonova signal was first detected in 2017

Kilonova

- Kilonova observed by optical telescopes days after merger
- Wavelength, brightness and duration of signal allow us to calculate total mass of r-process elements formed in explosion
- So how much r-process formed?
 We'll get back to this...

The expected kilonova signal was first detected in 2017

Ultra faint dwarf galaxies

- Extremely small and old galaxies, satellites of the Milky Way
- Mainly composed of dark matter: halo mass $\sim 10^5 M_{\odot}$ with only $\sim 10^3$ stars

DNS mergers and r-process elements in dwarf galaxies

Ji et al. 15

r-process elements
 recently detected in one
 Ultra Faint Dwarf galaxy
 and some
 other "classical" dwarves
 (Ji et al. 2015, Roederer et al. 2016)

How do we measure r-process material?

Different atoms have different energy levels

different emission and absorption lines

 Measuring these lines is like taking a unique fingerprint of the matter

Fe and Eu in dwarf galaxies

- - For Eu similar trend observed but with much larger scatter
 - Upper limit of $M_{Eu}=10^{-7}M_{\odot}$ in one galaxy along with a measurement of $10^{-5}M_{\odot}$ in a galaxy of similar luminosity suggests Eu in the latter dominated by a single event

Fe and Eu in dwarf galaxies

R-process rate and mass per event estimated *independently* from each other: Rate (per SNe) $\approx 10^{-3}$ << 1 & $m_{Eu} \approx 10^{-4} M_{\odot}$

UFDs as building blocks of galactic halo metal poor stars

- Galactic halo stars were suggested to originate from dwarf precursors
 (Frebel et al. 10, Van de Voort et al. 15, Ishimaru et al. 15, Griffen et al. 16, Macias & Ramirez Ruiz 16)
- If ~7% of dwarf precursors have an event leading to n_{Eu}/n_{Fe} ~30 larger than solar, then <[Eu/Fe]>~0.3 with spatial variations of up to ± 2
 - Ranges of Fe/H and Eu/Fe from dwarf precursors, consistent with galactic halo stars

Mixing of elements in the interstellar medium

Radioactively unstable isotopes

At the time of formation of the solar system the abundance of isotopes such as ^{244}Pu , ^{247}Cm was significantly higher than measured today

Low rate / slow diffusion and large mass per event

Hotokezaka et al. 2015, PB & Hotokezaka 2020

Mixing of elements in the interstellar medium

Radioactively stable elements

The scatter in abundances of stable elements is larger than observed if rate is low or diffusion slow (even with a constant mass per event)

Combining everything together

Summary

Many independent lines of evidence constrain rate of rprocess events and amount of mass created per event.

The observations suggest that double neutron star systems formed most of the r-process elements in the Universe.

