Formation of double Neutron star systems and implications for heavy element production Paz Beniamini California Institute of Technology # Formation of double Neutron star systems and implications for gold production Paz Beniamini California Institute of Technology ## Creation of an r-process element (a.k.a. gold) in mythology Inti – Inca sun god who's tears were gold Midas – king in Greek mythology 'gifted' with golden touch #### **Alchemy** Isaac Newton, Robert Boyle and Tycho Brahe were obsessed with the sorcerer's stone that would turn base metals into gold and grant immortality ## Modern understanding of elements – The structure of matter Matter composed of atoms which differ by proton and neutron number in nuclei #### Modern understanding of elements – The structure of matter Matter transforms between forms Fusion (e.g. stars) Fission (e.g. nuclear power plants) ## Major difference between fusion in stars and fission in nuclear power plants #### Modern understanding of elements - Light elements mostly formed in big bang and cosmic rays - Heavier elements forged in hearts of stars - Heavier elements still require external source of energy – Created in extreme temperatures and densities via the r-process #### The r-process #### Silver #### Gold #### Mercury #### WHERE DID THEY COME FROM? | Hydrogen | | $\bigvee\bigvee$ | HE | KE L | טוע | | 1EY | \mathcal{L} | \mathcal{I} | \L | -KC |)/\/(| · / | | | | | |----------------------|--------------------|--|----------------------------|----------------------|-------------------------|----------------------|----------------------|-------------------------|----------------------|-------------------|--------------------------|-----------------------|-----------------------|------------------------|--------------------------|--------------------------|------------------------| | 3
Li
Lithium | Be
Beryllium | ■ Elements that have been made in part by the <i>r</i> process B Boron | | | | | | | | | | | on | 7
N
Nitrogen | 0 | luorine | Ne Neon | | Na
Sodium | Magnesium | Si S CI Ar
Silicon Sulfur Chlorine Argon | | | | | | | | | | | | | Ar | | | | 19
K
Potassium | Ca
Calcium | Sc
Scandium | Ti
Titanium | 23
V
Vanadium | Cr
Chromium | Mn
Manganese | Fe Iron | Co
Cobalt | 28
Ni
Nickel | Cu
Copper | | Ga
Gall | manium | AS
Arsenic | Se
Selenium | Br
Bromine | Kr
Krypton | | Rb
Rubidium | Sr
Strontium | 39
Y
Yttrium | Zr
Zirconium | Niobium | MO
Molybdenum | Tc
Technetium | Ru
Ruthenium | Rh
Rhodium | Palladium | Ag
Silver | 48
C | In
Indium | Sn
Tin | Sb
Antimony | Te
Tellurium | 53

 lodine | Xe
Xenon | | 55
Cs
Caesium | 56
Ba
Barium | 57-71 | 72
Hf
Hafnium | 73
Ta
Tantalum | 74
W
Tungsten | 75
Re | 76
Os
Osmium | 77
 r
 ridium | 78
Pt
Platinum | 79
Au
Gold | Hg
Mercury | 81 | 82
Lead | 83
Bismuth | 84
Polonium | 85
Astotine | 86
Kadon | | 87
Fr
Francium | Radium | 89-103 | 104
Rf
Rutherfordium | 105
Db
Dubnium | 106
Sg
Seaborgium | 107
Bh
Bohrium | 108
Hs
Hassium | 109
Mt
Meitnerium | Ds
Darmstadtium | Rg
Roentgenium | 112
Cn
Copernicium | 113
Nh
Nihonium | 114
F
Flerovium | 115
Mc
Moscovium | 116
LV
Livermorium | TS
Tennessine | 118
Og
Oganesson | | 8 | 57
La
Lanthanum | Ce
Cerium | 59
Pr
Praseodymium | Neodymium | Promethium | Sm
Samarium | 63
EU
Europium | Gd
Gadolinium | Tb
Terbium | Dy
Dysprosium | 67
Ho
Holmium | 68
Er
Erbium | Tm
Thulium | 70
Yb
Ytterbium | 71
LU
Lutetium | |---|-----------------------|---------------------|--------------------------|--------------------|-----------------------|-----------------------|-----------------------|--------------------|-----------------------|-------------------|-------------------------|--------------------|---------------|-----------------------|-------------------------| | | Actinium | 70
Th
Thorium | Pa
Protactinium | 92
U
Uranium | 93
Np
Neptunium | 94
Pu
Plutonium | 95
Am
Americium | 96
Cm
Curium | 97
Bk
Berkelium | Cf
Californium | 99
Es
Einsteinium | Fermium | Mendelevium | No
Nobelium | 103
Lr
Lawrencium | Traditionally r-process thought as linked to supernovae Explosions of dying massive stars #### r-process - astrophysical evidence Total mass of r-process material in the Milky Way Total mass of r-process $M_{tot} = t R m$ \leftarrow material - measured Time of active formation - **known** Rate of events - unknown r-process mass created per event- *unknown* Events either 'common' (every ~ 50 years) and produce small amounts of mass per event (0.005% of sun's mass) **Events** rare (every ~ 50,000 years) and produce large amounts of mass per event (5% of sun's mass) #### r-process - astrophysical evidence Total mass of r-process material in the Milky Way Total mass of r-process $M_{tot} = t R_m +$ material - measured Time of active Rate of events formation - known r-process mass created per event- unknown **Events** either 'common' (every ~ 50 years) and produce small amounts of mass per event (0.005% of sun's mass) Supernovae **Double Neutron** star mergers unknown **Events** rare (every ~ 50,000 years) and produce large amounts of mass per event (5% of sun's mass) #### What are neutron stars? - Extremely dense remnants of once massive stars that exploded in supernovae and lost their envelopes - A Neutron star with the mass of the sun is only 10 km in radius! Like condensing a jumbo jet to a size of a single hair as long as it is wide #### Merger due to gravitational waves - Masses orbiting each other lose energy due to gravitational waves - The separation between the objects decreases over time, until their eventual merger Merger results in a gamma-ray burst, and also in a weaker explosion known as the kilonova, that is powered by radioactive decay of rprocess elements #### Merger due to gravitational waves Gravitational radiation is a general relativistic effect that was predicted by Einstein and observationally confirmed using a DNS system in the seventies. The radiation itself was directly observed for the first time in 2015 from black holes and in 2017 from neutron stars. Hulse & Taylor 74 (Nobel prize 93) LIGO's first detection of gravitational waves from a merging DNS (Nobel prize 2017) #### GW 170817 This lead to discovery of a gamma-ray burst and other electromagnetic counterparts that accompanied the gravitational waves Discovery by gravitational waves allows us to detect gamma-ray bursts at a closer distance and from a different viewing angle This allows us to detect different kinds of electromagnetic signals that were previously hidden from view #### **Kilonova** - Kilonova observed by optical telescopes days after merger - Wavelength, brightness and duration of signal allow us to calculate total mass of r-process elements formed in explosion - So how much r-process formed? ### The expected kilonova signal was first detected in 2017 #### **Kilonova** - Kilonova observed by optical telescopes days after merger - Wavelength, brightness and duration of signal allow us to calculate total mass of r-process elements formed in explosion - So how much r-process formed? We'll get back to this... ### The expected kilonova signal was first detected in 2017 #### **Ultra faint dwarf galaxies** - Extremely small and old galaxies, satellites of the Milky Way - Mainly composed of dark matter: halo mass $\sim 10^5 M_{\odot}$ with only $\sim 10^3$ stars ## DNS mergers and r-process elements in dwarf galaxies Ji et al. 15 r-process elements recently detected in one Ultra Faint Dwarf galaxy and some other "classical" dwarves (Ji et al. 2015, Roederer et al. 2016) #### How do we measure r-process material? Different atoms have different energy levels different emission and absorption lines Measuring these lines is like taking a unique fingerprint of the matter #### Fe and Eu in dwarf galaxies - - For Eu similar trend observed but with much larger scatter - Upper limit of $M_{Eu}=10^{-7}M_{\odot}$ in one galaxy along with a measurement of $10^{-5}M_{\odot}$ in a galaxy of similar luminosity suggests Eu in the latter dominated by a single event #### Fe and Eu in dwarf galaxies R-process rate and mass per event estimated *independently* from each other: Rate (per SNe) $\approx 10^{-3}$ << 1 & $m_{Eu} \approx 10^{-4} M_{\odot}$ ## UFDs as building blocks of galactic halo metal poor stars - Galactic halo stars were suggested to originate from dwarf precursors (Frebel et al. 10, Van de Voort et al. 15, Ishimaru et al. 15, Griffen et al. 16, Macias & Ramirez Ruiz 16) - If ~7% of dwarf precursors have an event leading to n_{Eu}/n_{Fe} ~30 larger than solar, then <[Eu/Fe]>~0.3 with spatial variations of up to ± 2 - Ranges of Fe/H and Eu/Fe from dwarf precursors, consistent with galactic halo stars #### Mixing of elements in the interstellar medium #### Radioactively unstable isotopes At the time of formation of the solar system the abundance of isotopes such as ^{244}Pu , ^{247}Cm was significantly higher than measured today Low rate / slow diffusion and large mass per event Hotokezaka et al. 2015, PB & Hotokezaka 2020 #### Mixing of elements in the interstellar medium #### Radioactively stable elements The scatter in abundances of stable elements is larger than observed if rate is low or diffusion slow (even with a constant mass per event) #### **Combining everything together** #### **Summary** Many independent lines of evidence constrain rate of rprocess events and amount of mass created per event. The observations suggest that double neutron star systems formed most of the r-process elements in the Universe.